

Three-Component Functionalized Dihydropyridine Synthesis via a Formal Inverse Electron-Demand Hetero-Diels-Alder Reaction

Xiaonan Yan, Fei Ling, Yuchen Zhang, and Cheng Ma*

Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China

Supporting Information

ABSTRACT: A mild three-component synthetic approach to versatile 2-amino-1,4-dihydropyridines from terminal alkynes, sulfonyl azides, and N-sulfonyl-1-aza-1,3-butadienes was successfully developed and relied on the in situ generation of metalated ynamide intermediates Ib to achieve a formal inverse electron-demand hetero-Diels-Alder reaction. Exper-

imental results suggest that alkali metal cations (Li^+ and Cs^+ ions) might play a critical role to achieve the cycloaddition process.

he hetero-Diels–Alder (HDA) reaction of azadienes has recently emerged as a promising approach to six-membered aza-heterocycles.¹ In this regard, the inverse electron-demand Diels-Alder (IEDDA) reaction of electron-deficient azadienes² with alkynes has been met with limited success to deliver dehydro-[4 + 2] adducts,³ partially due to geometric constrictions arising from the lineal disposition imposed by the *sp*-hybridization of the triple bond carbons.⁴ The reported types of these IEDDA reactions nearly all employ in situ generated azadienes to cyclize with a preorganized substituted alkyne.⁵ In 1999, Steinhagen and Corey presented a versatile route to dihydroquinolines through a IEDDA reaction between oazaxylylenes and ynamines (or alkoxyacetylenes) (Scheme 1a).^{5a} In 2007, Movassaghi and co-workers uncovered an acidmediated formal aza-[4 + 2] cycloaddition of enamides and ynamides to provide a direct synthesis of pyridines relying on the formation of bis-iminium intermediates from enamides (Scheme 1b).^{5b} Notably, in 2012, Kozmin and Rawal and co-workers

Scheme 1. Formal Dehydro-IEDDA Reactions upon in Situ Generation of Azadienes or Dienophiles

developed a silver-catalyzed tandem formal IEDDA/retro-Diels-Alder reaction sequence of phthalazines and siloxy alkynes, giving rise to siloxy naphthalenes and anthracenes.⁵ Despite this significant progress, the development of novel IEEDA approaches, such as using simpler alkynes, for the assembly of six-membered heterocycles remains desirable.

During the past decade, ynamides have emerged as powerful and versatile building blocks in a variety of ring-forming transformations.^{6,7} As a complementary alternate to substituted ynamides, we have recently developed a mild procedure to generate lithiated ynamides⁸ by the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction⁹ in the presence of stoichiometric amounts of LiOH.¹⁰ The resulting lithiated ynamide intermediates could react with ynals to give polysubstituted alkenes in high E/Z selectivity through a cascade [2+2]/retro-[2+ 2] reaction, simultaneously enabling the incorporation of the sulfonyl amide moiety.^{10a,b} Herein, we wish to report a Cucatalyzed three-component reaction of terminal alkynes, sulfonyl azides, and N-sulfonyl-1-aza-1,3-butadienes¹¹ for the direct synthesis of 2-amino-1,4-dihydropyridines¹² through a formal IEDDA reaction of electron-deficient 1-azadienes with transient metalated ynamides (Scheme 1c).

An initial trial was conducted with the mixtures of methyl 2-(phenyl(tosylimino)methyl)acrylate (1a), ethynylbenzene (2a), and tosyl azide (3a), using CuI (10 mol %) and Et₄NI (10 mol %)as the catalysts in the presence of 4 Å molecular sieves under N₂ atmosphere (Table 1). While 2,6-lutidine was completely ineffective to give any desired cyclization products, LiOH could enable the direct formation of 2-amino-1,4-dihydropyridine 4a in 49% isolated yield after 48 h (Table 1, entries 1 and 2). To improve the chemical yield, two other inorganic bases were examined. Whereas t-BuOLi sharply accelerated the conversion of substrates, the desired product 4a was only obtained in 24% yield along with a lot of undetermined byproducts (entry 3). Gratifyingly, cesium carbonate (Cs_2CO_3) significantly elevated

Received: June 3, 2015 Published: June 26, 2015

Letter

Table 1. Optimization of Reaction Conditions^a

I MeO	^{Ph} NTs ₂ C + + Ph 1a 2a	10 10 TsN ₃ 4 Å M 3a) mol % Cul mol % Et ₄ NI ase, temp, t IS, solvent, N ₂ INH ₄ Cl (aq)	Ts Ph N D ₂ C 4a	NHTs Ph
entry	solvent	temp (°C)	base (equiv)	<i>t</i> (h)	yield (%) ^b
1	THF	10	LiOH (1.5)	48	49
2	THF	10	2,6-lutidine (1.5)	48	
3	THF	10	t-BuOLi (1.5)	1	24
4	THF	10	Cs_2CO_3 (1.5)	6	64
5	THF:t-BuOH ^c	10	Cs_2CO_3 (1.5)	6	81
6	toluene	10	Cs_2CO_3 (1.5)	24	44
7	DCE	10	Cs_2CO_3 (1.5)	24	62
8	THF:t-BuOH ^c	10	Cs_2CO_3 (3.0)	4	88
9	THF:t-BuOH ^c	25	Cs_2CO_3 (3.0)	3	90
10	THF:t-BuOH ^c	35	Cs_2CO_3 (3.0)	2	78
11	THF:t-BuOH ^c	25	K_2CO_3 (3.0)	12	9
12	THF:t-BuOH ^c	25	NaOH (3.0)	10	12
a	_	<i>(</i>) <i>(</i>	-> /	- >	,

^{*a*}Reaction conditions: (1) **1a** (0.2 mmol), **2a** (0.3 mmol), **3a** (0.3 mmol), CuI (10 mol %), and Et₄NI (10 mol %) in solvent (5.0 mL) under N₂, then base (1.5 equiv or 3.0 equiv); (2) saturated aqueous NH₄Cl (10 mL). ^{*b*}Isolated yield of **4a**. ^{*c*}v/v = 10:1. Et₄NI = tetraethylammonium iodide.

the reaction yield to 64% (Table 1, entry 4). Using 1.5 equiv of Cs_2CO_3 , subsequent investigation of solvent effects (Table 1, entries 5–7) indicated the mixtures of THF and *tert*-butyl alcohol (v/v = 10:1) to be the best choice. Intriguingly, increasing the amount of Cs_2CO_3 to 3.0 equiv would favor the formation of 4a (entry 8). It was observed that the temperature has a critical effect on this reaction (Table 1, entries 8–10): while the yield of 4a slightly increased to 90% by elevating the temperature to 25 °C, further increase in temperature led to a complicated conversion and dropped the product yield to 78% (2 h). Nevertheless, other inorganic base like K_2CO_3 and NaOH proved to be ineffective for this conversion (entries 11 and 12), suggesting that metal cations might play a distinct role herein. Finally, the structure of 4a was unambiguously determined by single-crystal X-ray diffraction analysis.

The scope of this reaction was then explored with a range of accessible 1-azadienes 1 (Scheme 2). Variation of R¹ showed that the substitution patterns of aryl moieties had little effect on this cycloaddition reaction, delivering desired products 4b-d in similar yields from ortho-, meta-, and para-substituted arenes, respectively. Substituted benzene rings bearing an electrondonating group (-OMe) or an electron-withdrawing group (-Br) were tolerated to form products 4e and 4f. Other aromatic rings, including benzo [d] [1,3] dioxol-5-yl, 2-furyl, and 2-thienyl groups could also be introduced to accomplish this conversion successfully, providing access to the desired dihydropyridines 4g, 4h, and 4i in reasonably good yields. However, a range of terminal alkynes were also examined for this three-component reaction. Aromatic alkynes containing $-CH_3$, -Br, and $-NO_2$ groups at the 4-position of benzene rings underwent this reaction smoothly, affording the targeted products 4j-l in moderate to good yield. Alkynyl-substituted dihydropyridine 4m could also be obtained by using a buta-1,3-diyn-1-ylbenzene as the substrate. Other aliphatic alkynes including 1-ethynylcyclohex-1-ene and ethynylcyclopropane were also suitable substrates for this conversion to give products 4n and 4o successfully, albeit in lower yields. Nevertheless, it was unsuccessful to isolate the

"Reaction conditions: (1) 1 (0.2 mmol), 2 (0.3 mmol), 3 (0.3 mmol), CuI (10 mol %), 4 Å MS (100 mg), and Et₄NI (10 mol %) in THF/*t*-BuOH (v/v = 10:1) under N₂ at 25 °C, then Cs₂CO₃ (0.6 mmol); (2) saturated aqueous NH₄Cl (10 mL). The yields are of the isolated products.

desired product from the reaction of hex-1-yne in which a complicated mixture was formed. Moreover, variation of the sulfonyl azide component ($R^3 = 4$ -AcNHC₆H₄) was also tolerated; the corresponding product **4p** was obtained in 55% yield.

Functionalized pyridines **5** were easily derived from **4** by NaOH (3 equiv) in methanol with retained ester groups in 67–91% yield:

However, the present cycloaddition process could be easily carried out on a multigram scale, for example, to produce versatile dihydropyridine **4m** in 65% yield (Scheme 3). Upon treatment with Et₂Zn (2.2 equiv), dihydropyridine **4m** underwent an aromatization/cyclization cascade smoothly, resulting in the formation of *N*-tosyl-7-azaindole **6m** in 52% yield. The reaction of **4m** and 3-bromoprop-1-ene catalyzed by PdCl₂ in DMF at 80 °C directly furnished 7-azaindole **7m** in 53% yield through a palladium-catalyzed desulfonation/cyclization/coupling sequence. Notably, 7-azaindole is one class of azaindole compounds, which constitute essential subunits in many pharmaceutically important compounds and have also found applications in material synthesis and coordination chemistry.¹³

To gain preliminary understanding of possible pathways of the multicomponent reaction of 1-azadienes 1, terminal alkynes 2,

Scheme 3. Formation of 7-Azaindoles 6m and 7m

and sulfonyl azides 3, several control experiments of 1-sulfonyltriazole 8 and 1a were conducted (Scheme 4). After

decomposition of 8 by *n*-butyllithium at -78 °C, as expected, the resulting lithium ynamidate Ia reacted with azadiene 1a smoothly, leading to the formation of dihydropyridine 4a in 56% yield. However, in the presence of 3 equiv of [12]crown-4, no desired 4a was observed regardless of the absence or the presence of catalytic amounts of CuI.¹⁴ These results suggested that lithium cation is presumably required for the current cycloaddition process as Lewis acid, while previous reports on the Lewis acid-catalyzed formal IEDDA reaction of azadienes employed transition-metal salts^{5c} or boron-containing compounds¹⁵ as the catalysts.

A plausible pathway for this tandem reaction is depicted in Scheme 5. Initial CuI-catalyzed cascade reaction of terminal alkyne 2 and azide 3 in the presence of stoichiometric amounts of Cs_2CO_3 generates cesium ynamidate **Ib**, which undergoes cyclization with 1-azadiene 3 to afford [4 + 2] cycloadduct **II**. Given the critical effect of lithium cation on delivering product 4a in control experiments, a transient complex **III** would be involved in this formal cycloaddition step, wherein the cesium cation acts as a Lewis acid to facilitate the formation of **II**. Finally, the protonation of **II** with aqueous NH₄Cl then furnishes the targeted product 4.

In conclusion, we have developed a three-component reaction of terminal alkynes, sulfonyl azides, and *N*-sulfonyl-1-aza-1,3-

Scheme 5. Proposed Reaction Pathway

butadienes, providing access to densely functionalized 1,4dihydropyridine compounds, which constitute a versatile scaffold for the synthesis of pyridine and 7-azaindole derivatives. Mechanically, this synthetic procedure proceeds through a formal IEDDA reaction of electron-deficient 1-azadienes with metalated ynamide intermediates arising from a Cu-catalyzed azide—alkyne reaction in the presence of stoichiometric amounts of Cs_2CO_3 . Experimental results suggest that alkali metal cations (Li⁺ and Cs⁺ ions) might play a critical role in this formal [4 + 2] cycloaddition process.

ASSOCIATED CONTENT Supporting Information

X-ray crystallographic data of **4a**, experimental procedures, and characterization data of new compounds. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b01622.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mcorg@zju.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Natural Science Foundation of China (21372196) and the Zhejiang Provincial Natural Science Foundation of China (R4110055) for financial support.

REFERENCES

(1) For recent reviews, see: (a) Groenendaal, B.; Ruijter, E.; Orru, R. V.
 A. Chem. Commun. 2008, 5474. (b) Jiang, X.; Wang, R. Chem. Rev. 2013, 113, 5515. (c) Neely, J. M.; Rovis, T. Org. Chem. Front. 2014, 1, 1010.
 (2) For reviews, see: (a) Monbaliu, J.-C. M.; Masschelein, K. G. R.; Stevens, C. V. Chem. Soc. Rev. 2011, 40, 4708. (b) Foster, R. A. A.; Willis, M. C. Chem. Soc. Rev. 2013, 42, 63. (c) Knall, A.-C.; Slugovc, C. Chem. Soc. Rev. 2013, 42, 5131.

(3) For a general review on the dehydro-Diels-Alder reaction, see: Wessig, P.; Müller, G. *Chem. Rev.* **2008**, *108*, 2051.

(4) For an elegant intermolecular hetero-dehydro-Diels-Alder reaction of captodative dienynes with nitriles, see: Barluenga, J.; Fernández-Rodríguez, M. Á.; García-García, P.; Aguilar, E. J. Am. Chem. Soc. **2008**, 130, 2764.

(5) (a) Steinhagen, H.; Corey, E. J. Angew. Chem., Int. Ed. **1999**, 38, 1928. (b) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. **2007**, 129, 10096. (c) Türkmen, Y. E.; Montavon, T. J.; Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. **2012**, 134, 9062. For an example of aza-[4

Organic Letters

+ 2] cycloaddition of allenamides, see: (d) Berry, C. R.; Hsung, R. P. *Tetrahedron* **2004**, *60*, 7629.

(6) For general reviews, see: (a) DeKorver, K. A.; Li, H.; Lohse, A. G.;
Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. *Chem. Rev.* 2010, *110*, 5064.
(b) Evano, G.; Coste, A.; Jouvin, K. *Angew. Chem., Int. Ed.* 2010, *49*, 2840. (c) Evano, G.; Jouvin, K.; Coste, A. *Synthesis* 2013, *45*, 17.

(7) For an account on ynamides in ring forming transformations, see:
(a) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560. For a leading reference on formal yne-carbonyl metathesis of vinyl ynamides prompted by BF₃. Et₂O, see: (b) Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Douglas, C. J.; Xiong, H.; Mulder, J. A. Org. Lett. 1999, 1, 1237. For recent examples, see: (c) Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Org. Lett. 2015, 17, 30.
(d) Wang, X.-N.; Ma, Z.-X.; Deng, J.; Hsung, R. P. Tetrahedron Lett. 2015, 56, 3463. (e) Gawade, S. A.; Huple, D. B.; Liu, R.-S. J. Am. Chem. Soc. 2014, 136, 2978. (f) Mansfield, S. J.; Campbell, C. D.; Jones, M. W.; Anderson, E. A. Chem. Commun. 2015, 51, 3316.

(8) For recent examples of lithiated ynamides by carbolithiation, see: (a) Gati, W.; Rammah, M. M.; Rammah, M. B.; Couty, F.; Evano, G. J. *Am. Chem. Soc.* **2012**, *134*, 9078. (b) Wang, X.-N; Hsung, R. P.; Qi, R.; Fox, S. K.; Lv, M.-C. Org. Lett. **2013**, *15*, 2514.

(9) For reviews, see: (a) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S. Chem. - Asian J. 2011, 6, 2618. (b) Lu, P.; Wang, Y. G. Chem. Soc. Rev. 2012, 41, 5687. (c) Lu, P.; Wang, Y. G. Synlett 2010, 2010, 165. For leading reference, see: (d) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038. (e) Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16046. (f) Cassidy, M. P.; Raushel, J.; Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45, 3154. For recent examples of ring-forming reaction involving ketenimine intermediates, see: (g) Namitharan, K.; Zhu, T.; Cheng, J.; Zheng, P.; Li, X.; Yang, S.; Song, B.-A.; Chi, Y. R. Nat. Commun. 2014, 5, 3982. (h) Xing, Y.; Cheng, B.; Wang, J.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 4814. (i) Xu, H.-D.; Jia, Z.-H.; Xu, K.; Han, M.; Jiang, S.-N.; Cao, J.; Wang, J.-C.; Shen, M.-H. Angew. Chem., Int. Ed. 2014, 53, 9284. (j) Jiang, B.; Tu, X.-J; Wang, X.; Tu, S.-J; Li, G. Org. Lett. 2014, 16, 3656. (k) Zhou, F.; Liu, X.; Zhang, N.; Liang, Y.; Zhang, R.; Xin, X.; Dong, D. Org. Lett. 2013, 15, 5786. (1) Murugavel, G.; Punniyamurthy, T. Org. Lett. 2013, 15, 3828. (m) Li, B.-S.; Yang, B.-M.; Wang, S.-H.; Zhang, Y.-Q.; Cao, X.-P.; Tu, Y.-Q. Chem. Sci. 2012, 3, 1975. (n) Li, S.; Wu, J. Chem. Commun. 2012, 48, 8973. (o) Lu, W.; Song, W.; Hong, D.; Lu, P.; Wang, Y. G. Adv. Synth. Catal. 2009, 351, 1768

(10) (a) Cheng, D.; Ling, F.; Li, Z.; Yao, W.; Ma, C. Org. Lett. **2012**, *14*, 3146. (b) Li, Z.; Ling, F.; Cheng, D.; Ma, C. Org. Lett. **2014**, *16*, 1822. For our related works, see: (c) Yao, W.; Pan, L.; Zhang, Y.; Wang, G.; Wang, X.; Ma, C. Angew. Chem., Int. Ed. **2010**, *49*, 9210. (d) Ling, F.; Li, Z.; Zheng, C.; Liu, X.; Ma, C. J. Am. Chem. Soc. **2014**, *136*, 10914.

(11) (a) Liu, H.; Zhang, Q.; Wang, Li; Tong, X. Chem. Commun. 2010, 46, 312. (b) Jiang, X. X.; Shi, X. M.; Wang, S. L.; Sun, T.; Cao, Y. M.; Wang, R. Angew. Chem., Int. Ed. 2012, 51, 2084.

(12) For recent reviews on dihydropyridine synthesis, see: (a) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. *Chem. Rev.* 2012, 112, 2642. (b) Wan, J.-P.; Liu, Y. *RSC Adv.* 2012, 2, 9763. For reaction of dihydropyridines, see: (c) Singh, S. K.; Sharma, V. K. *Curr. Org. Chem.* 2014, 18, 1159. (d) Mesganaw, T.; Ellman, J. A. *Org. Process Res. Dev.* 2014, 18, 1097.

(13) (a) Mérour, J. Y.; Routier, S.; Suzenet, F.; Joseph, B. *Tetrahedron* **2013**, *69*, 4767. (b) Song, J. J.; Reeves, J. T.; Gallou, F.; Tan, Z.; Yee, N. K.; Senanayake, C. H. *Chem. Soc. Rev.* **200**7, *36*, 1120. (c) Popowycz, F.; Routier, S.; Joseph, B.; Mérour, J.-Y. *Tetrahedron* **200**7, *63*, 1031.

(14) Using 0.5 equiv of [12] crown-4, the desired product 4a was obtained in 43% yield. The complexation of Li metal with the crown ether might hinder the approaching diene and thus inhibited the reaction.

(15) (a) Kessler, S. N.; Wegner, H. A. Org. Lett. 2010, 12, 4062.
(b) Lorbach, A.; Bolte, M.; Lerner, H.-W.; Wagner, M. Chem. Commun.
2010, 46, 3592. (c) Kessler, S. N.; Neuburger, M.; Wegner, H. A. J. Am. Chem. Soc. 2012, 134, 17885.